

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	buildstrap 0.4.0 documentation

Buildstrap: self contained env with ♥

For those who want to hack on any project without having to hack around your
shell environment, mess with your python tools, pollute your home dotfiles,
buildstrap is for you.

This project will bring the power of buildout [https://github.com/buildout/buildout], by generating in a simple
command all you need to setup a buildout configuration, that will then create
a self contained python environment for all your hacking needs.

It’s as simple as:

% git clone https://github.com/guyzmo/buildstrap
% cd buildstrap
% buildstrap run buildstrap requirements.txt
…
% bin/buildstrap --version
0.1.1

What is being done here, is that you tell buildstrap the package’s name,
and the requirements files to parse, and it will generate the the following
buildout.cfg file:

[buildout]
newest = false
parts = buildstrap
develop = .
eggs-directory = ${buildout:directory}/var/eggs
develop-eggs-directory = ${buildout:directory}/var/develop-eggs
develop-dir = ${buildout:directory}/var/develop
parts-directory = ${buildout:directory}/var/parts
requirements = ${buildout:develop}/requirements.txt

[buildstrap]
eggs = ${buildout:requirements-eggs}
 buildstrap
recipe = zc.recipe.egg

That file is then used to configure buildout so it creates the environment
in your project’s directory. You’ll find all your dependencies downloaded
into /var, and all the scripts you need populated in /bin.

So, it’s only two directories to add to your .gitignore, and to delete
when you want to make your workspace clean again. Then you can choose to
either keep (and eventually tweak) your buildout.cfg file, or throw it
away.

Yes, it’s as easy as it sounds!

	Buildstrap: generate a buildout config for any *env project

	Quickstart Guide
	Usage

	Installation

	Development

	Nota Bene

	License

	Buildout configuration

	Usage

	Multiple requirements.txt

	Multiple packages
	Control the output

	Configure the path
	Root path: --root

	Sources path: --src

	Environment path: --env

	Bin path: --bin

	buildstrap package
	Submodules

	buildstrap.buildstrap module

	Module contents

 Copyright 2016, Bernard `Guyzmo` Pratz.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	buildstrap 0.4.0 documentation

Buildstrap: generate a buildout config for any *env project

[image: WTFPL] [http://wtfpl.org]
[image: Python3] [https://pypi.python.org/pypi/buildstrap]
[image: Issues] [https://github.com/guyzmo/buildstrap]
[image: Build] [https://travis-ci.org/guyzmo/buildstrap]
[image: Code Climate] [https://codeclimate.com/github/guyzmo/buildstrap]
[image: Coverage] [https://codeclimate.com/github/guyzmo/buildstrap]

There’s pyenv, pyvenv, venv, virtualenv… and who knows how many other ways to
deal with development of python programs in a per-project self-contained
manner.

While most of the python community tried to keep up, and got their shell
configuration or global pip changing regularly, some have been quietly enjoying
python development the same way for the last ten years, using buildout [https://github.com/buildout/buildout/] for
their development.

Though, it’s a fact that buildout is not the standard way to do things, even if
it’s a very convenient tool. So to keep your repositories compatible with most
*env tools available — or get buildout with other projects. I wrote this tool
to make it easy to create a buildout environment within the project.

Quickstart Guide

Here we’ll see the most common usages, and refer to the full documentation for
more details [https://buildstrap.readthedocs.io/].

Usage

when you got a repository that has requirements files, at the root of your project’s
directory, call buildstrap using:

% buildstrap run project requirements.txt

where project as second argument is the name of the package as you’ve set it
up in your setup.py — and as you’d import it from other python code.

Running that command will generate the buildout.cfg file, and run buildout
in your current directory. Then you’ll find all your scripts available in the
newly created bin directory of your project.

If you have several requirements.txt files, depending on the task you want to
do, it’s easy:

% buildstrap run project -p pytest -p sphinx requirements.txt requirements-test.txt requirements-doc.txt

which will create three sections in your buildout.cfg file, and get all the
appropriate dependencies.

Here’s a real life example:

% git hub clone kennethreitz/requests # cf 'Nota Bene'
% cd requests
% buildstrap run requests requirements.txt
…
% bin/py.test
… (look at the tests result)
% bin/python3
>>> import requests
>>>

or another one:

% git hub clone jkbrzt/httpie # cf 'Nota Bene'
% cd httpie
% buildstrap run httpie requirements-dev.txt
…
% bin/py.test
… (look at the tests result)
% bin/http --version
1.0.0-dev

Installation

it’s as easy as any other python program:

% pip install buildstrap

or from the sources:

% git hub clone guyzmo/buildstrap
% cd buildstrap
% python3 setup.py install

Development

for development you just need to do:

% pip install buildstrap
% git clone https://github.com/guyzmo/buildstrap
% cd buildstrap
% builstrap run buildstrap -p pytest -p sphinx requirements.txt requirement-test.txt requirement-doc.txt
…
% bin/buildstrap

Yeah, I’m being evil here 😈

You can have a look at the sources documentation [https://buildstrap.readthedocs.io/en/latest/buildstrap.html].

Nota Bene

You might wonder where does the git hub clone command comes from, and I’m
using here another project I wrote: guyzmo/git-repo [https://github.com/guyzmo/git-repo].

Simply put, git hub clone user/project is equivalent to git clone https://github.com/user/project.

License

Copyright © 2016 Bernard `Guyzmo` Pratz <guyzmo+buildstrap+pub@m0g.net>
This work is free. You can redistribute it and/or modify it under the
terms of the Do What The Fuck You Want To Public License, Version 2,
as published by Sam Hocevar. See the LICENSE file for more details.

 Copyright 2016, Bernard `Guyzmo` Pratz.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	buildstrap 0.4.0 documentation

Buildout configuration

Before going into more details, let’s have briefly a look at a buildout.cfg
configuration. Each section of the configuration file are called parts in
buildout slang. The part configures a directive to run using a recipe. There
are many recipes you can lookup [http://www.buildout.org/en/latest/docs/recipelist.html], but in a buildout.cfg freshly
baked by buildstrap, you’ll only see two:

	zc.recipe.egg: which takes care of downloading and installing dependencies into
the self-contained environment ;

	gp.vcsdevelop: which parses a requirements.txt file and exposes the
dependencies, so zc.recipe.egg can do its job (in the context of buildstrap).

Then, to setup the environment, there’s a section named [buildout] that
contains everything needed to setup the self contained environment, like the
list of parts to run (remove one from there and it’ll be ignored), the paths to
the used directories…

Once the buildout configuration file, buildout.cfg has been generated, you can tweak
it as much as you like to suit your needs. Buildout is much more than just setting up
a self contained environment!

If you want to read more about buildout, check its documentation [http://www.buildout.org/en/latest/docs/], or for more
in depth info, check buildout.cfg manual [https://github.com/buildout/buildout/blob/master/src/zc/buildout/buildout.txt].

 Copyright 2016, Bernard `Guyzmo` Pratz.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	buildstrap 0.4.0 documentation

Usage

Usage: buildstrap [-v...] [options] [run|show|debug|generate] [-p part...]<package> <requirements>...

Options:
 run run buildout once buildout.cfg has been generated
 show show the buildout.cfg (same as using `-o -`)
 debug print internal representation of buildout config
 generate create the buildout.cfg file (default action)
 <package> use this name for the package being developed
 <requirements> use this requirements file as main requirements
 -p,--part <part> choose part template to use (use "list" to show all)
 -i,--interpreter <python> use this python version
 -o,--output <buildout.cfg> file to output [default: buildout.cfg]
 -r,--root <path> path to the project root (where buildout.cfg will
 be generated) (defaults to ./)
 -s,--src <path> path to the sources (default is same as root path)
 relative to the root path if not absolute
 -e,--env <path> path to the environment data [default: var]
 relative to directory if not absolute
 -b,--bin <path> path to the bin directory [default: bin]
 relative to directory if not absolute
 -f,--force force overwrite output file if it exists
 -c,--config <path> path to the configuration directory
 [default: ~/.config/buildstrap]
 -v,--verbose increase verbosity
 -h,--help show this message
 --version show version

Multiple requirements.txt

Many projects offer multiple requirements.txt files, one for each task of
the development cycle (which usually are running, testing, documenting).

Well, just tell buildstrap what the extra requirements are:

% buildstrap run buildstrap -p pytest -p sphinx requirements.txt requirements-doc.txt requirements-test.txt

and that will generate the following buildout.cfg configuration:

[buildout]
newest = false
parts = buildstrap
 pytest
 sphinx
package = buildstrap
extensions = gp.vcsdevelop
develop = .
eggs-directory = ${buildout:directory}/var/eggs
develop-eggs-directory = ${buildout:directory}/var/develop-eggs
parts-directory = ${buildout:directory}/var/parts
develop-dir = ${buildout:directory}/var/develop
bin-directory = ${buildout:directory}/bin
requirements = ${buildout:develop}/requirements.txt
 ${buildout:develop}/requirements-doc.txt
 ${buildout:develop}/requirements-test.txt

[buildstrap]
recipe = zc.recipe.egg
eggs = ${buildout:requirements-eggs}
 buildstrap

[pytest]
arguments = ['--cov={}/{}'.format('${buildout:develop}', package) for package in '${buildout:pack
age}'.split(',')] \
 +['--cov-report', 'term-missing', 'tests']+sys.argv[1:]
eggs = ${buildout:requirements-eggs}
recipe = zc.recipe.egg

[sphinx]
eggs = ${buildout:requirements-eggs}
source = ${buildout:directory}/doc
recipe = collective.recipe.sphinxbuilder
build = ${buildout:directory}/doc/_build

and you’ll find all the tools you’ll need in bin:

% ls bin
buildout cm2html cm2man cm2xetex py.test sphinx sphinx-autogen sphinx-quickstart
buildstrap cm2latex cm2pseudoxml cm2xml py.test-2.7 sphinx-apidoc sphinx-build

Multiple packages

Some projects will include several packages in the sources, so to support that, just list
all your packages as a comma seperated list, and they will all be included:

% buildstrap show dent,prefect,beeblebox requirements.txt
[buildout]
newest = false
parts = dent
package = dent prefect beeblebox
extensions = gp.vcsdevelop
develop = .
eggs-directory = ${buildout:directory}/var/eggs
develop-eggs-directory = ${buildout:directory}/var/develop-eggs
parts-directory = ${buildout:directory}/var/parts
develop-dir = ${buildout:directory}/var/develop
bin-directory = ${buildout:directory}/bin
requirements = ${buildout:develop}/requirements.txt

[dent]
recipe = zc.recipe.egg
eggs = ${buildout:requirements-eggs}
 dent
 prefect
 beeblebox

Control the output

If you want to only generate the buildout.cfg file, simply use buildstrap with
no subcommand, and you’ll get it in your current directory!

% buildstrap slartibartfast requirements.txt
% cat buildout.cfg
[buildout]
newest = false
parts = slartibartfast
package = slartibartfast
extensions = gp.vcsdevelop
develop = .
eggs-directory = ${buildout:directory}/var/eggs
develop-eggs-directory = ${buildout:directory}/var/develop-eggs
parts-directory = ${buildout:directory}/var/parts
develop-dir = ${buildout:directory}/var/develop
bin-directory = ${buildout:directory}/bin
requirements = ${buildout:develop}/requirements.txt

[slartibartfast]
recipe = zc.recipe.egg
eggs = ${buildout:requirements-eggs}
 slartibartfast

but if you want to just test the command and print the configuration to stdout,
without it doing nothing, use the show subcommand:

% buildstrap show slartibartfast requirements.txt
[buildout]
newest = false
parts = slartibartfast
package = slartibartfast
extensions = gp.vcsdevelop
develop = .
eggs-directory = ${buildout:directory}/var/eggs
develop-eggs-directory = ${buildout:directory}/var/develop-eggs
parts-directory = ${buildout:directory}/var/parts
develop-dir = ${buildout:directory}/var/develop
bin-directory = ${buildout:directory}/bin
requirements = ${buildout:develop}/requirements.txt

[slartibartfast]
recipe = zc.recipe.egg
eggs = ${buildout:requirements-eggs}
 slartibartfast

and if you want to write the buildout.cfg as another file, you can either redirect
the show command with a pipe, or use the --output argument:

% buildstrap -o foobar.cfg slartibartfast requirements.txt
% cat foobar.cfg
[buildout]
newest = false
parts = slartibartfast
package = slartibartfast
extensions = gp.vcsdevelop
develop = .
eggs-directory = ${buildout:directory}/var/eggs
develop-eggs-directory = ${buildout:directory}/var/develop-eggs
parts-directory = ${buildout:directory}/var/parts
develop-dir = ${buildout:directory}/var/develop
bin-directory = ${buildout:directory}/bin
requirements = ${buildout:develop}/requirements.txt

[slartibartfast]
recipe = zc.recipe.egg
eggs = ${buildout:requirements-eggs}
 slartibartfast

N.B.: the show command is equivalent to --output -.

Configure the path

For your project, there are three important path to configure:

	where your project root is,

	where your sources are (within your project),

	where your environment will be.

When you’re using buildstrap on a project, the default are safe, as long as you’re
running while you’re doing it within the sources of the project. Then what you’ll have
is:

	root_path → ‘.’

	src_path → {root_path} → ‘.’

	env_path → {root_path}/var → ‘./var’

	bin_path → {root_path}/bin → ‘./bin’

But sometimes, you want to change the defaults, for the best (or the worst
—most often, the worst, though).

So, you can set all those paths to values other than the default, and have it
all in a very different setup than the default.

Root path: --root

The project’s root is where typically all other paths are being relative to.
It’s where you’ll expect to find the buildout.cfg file, and where the
environment directory will be.

When passed, it’s setting up the directory directive of the buildout.cfg
file, otherwise it’s keeping the default.

% buildstrap -r /tmp/buildstrap-env/ show buildstrap requirements.txt
[buildout]
newest = false
parts = buildstrap
package = buildstrap
extensions = gp.vcsdevelop
directory = /tmp/buildstrap-env/
develop = .
eggs-directory = ${buildout:directory}/var/eggs
develop-eggs-directory = ${buildout:directory}/var/develop-eggs
parts-directory = ${buildout:directory}/var/parts
develop-dir = ${buildout:directory}/var/develop
bin-directory = ${buildout:directory}/bin
requirements = ${buildout:develop}/requirements.txt

[buildstrap]
recipe = zc.recipe.egg
eggs = ${buildout:requirements-eggs}
 buildstrap

Sources path: --src

Though, if you change the root directory, chances are (like in the former example) that
it won’t be where your sources are. Then, running buildout will end up in throwing an
exception:

FileNotFoundError: [Errno 2] No such file or directory: '/tmp/builstrap-env/./setup.py'

The source path is where you’ll have your setup.py file that defines your project.
So, if your setup.py is not at the root of your project, you definitely want to
use the --src argument.

% buildstrap -r /tmp/buildstrap-build -s `pwd`/buildstrap show buildstrap requirements.txt
[buildout]
newest = false
parts = buildstrap
package = buildstrap
extensions = gp.vcsdevelop
directory = /tmp
develop = /absolute/path/to/buildstrap
eggs-directory = ${buildout:directory}/var/eggs
develop-eggs-directory = ${buildout:directory}/var/develop-eggs
parts-directory = ${buildout:directory}/var/parts
develop-dir = ${buildout:directory}/var/develop
bin-directory = ${buildout:directory}/bin
requirements = ${buildout:develop}/requirements.txt

[buildstrap]
recipe = zc.recipe.egg
eggs = ${buildout:requirements-eggs}
 buildstrap

Nota Bene: if you do not want to use a path relative to the root path, then
use an absolute path, or you’ll have surprises! As you can see in the example above
the path is made absolute by using the pwd command.

So running this command with buildout will do:

% buildout
Creating directory '/tmp/buildstrap-build/var/eggs'.
Getting distribution for 'gp.vcsdevelop'.
warning: no previously-included files matching '*' found under directory 'docs/_build'
Got gp.vcsdevelop 2.2.3.
Creating directory '/tmp/buildstrap-build/bin'.
Creating directory '/tmp/buildstrap-build/var/parts'.
Creating directory '/tmp/buildstrap-build/var/develop-eggs'.
Develop: '/home/guyzmo/Workspace/Projects/buildstrap'
Getting distribution for 'zc.recipe.egg>=2.0.0a3'.
Got zc.recipe.egg 2.0.3.
Unused options for buildout: 'package'.
Installing buildstrap.
Generated script '/tmp/buildstrap-build/bin/buildout'.
Generated script '/tmp/buildstrap-build/bin/buildstrap'.

Environment path: --env

As seen in the previous example, the script is generating a bunch of directories used
for setting up the environment in {root_path}/var/. You might want them to be named
differently, so they’re not seen in listings for example:

% buildstrap -r /tmp -s `pwd`/buildstrap -e .var show buildstrap requirements.txt
[buildout]
newest = false
parts = buildstrap
package = buildstrap
extensions = gp.vcsdevelop
directory = /tmp
develop = /home/guyzmo/Workspace/Projects/buildstrap/buildstrap
eggs-directory = ${buildout:directory}/.var/eggs
develop-eggs-directory = ${buildout:directory}/.var/develop-eggs
parts-directory = ${buildout:directory}/.var/parts
develop-dir = ${buildout:directory}/.var/develop
bin-directory = ${buildout:directory}/bin
requirements = ${buildout:develop}/requirements.txt

[buildstrap]
recipe = zc.recipe.egg
eggs = ${buildout:requirements-eggs}
 buildstrap

or you might want to put it at any other place, by using an absolute path:

% buildstrap -r /tmp -s `pwd`/buildstrap -e /tmp/buildstrap-var show buildstrap requirements.txt
[buildout]
directory = /tmp
develop = /home/guyzmo/Workspace/Projects/buildstrap/buildstrap
eggs-directory = /tmp/buildstrap-var/eggs
develop-eggs-directory = /tmp/buildstrap-var/develop-eggs
parts-directory = /tmp/buildstrap-var/parts
develop-dir = /tmp/buildstrap-var/develop
bin-directory = ${buildout:directory}/bin
…

Bin path: --bin

Finally, you might not like the default of having the bin directory at the
root path position, so you can put it within var the following way:

% buildstrap -b var/bin show buildstrap requirements.txt
[buildout]
develop = .
eggs-directory = ${buildout:directory}/var/eggs
develop-eggs-directory = ${buildout:directory}/var/develop-eggs
parts-directory = ${buildout:directory}/var/parts
develop-dir = ${buildout:directory}/var/develop
bin-directory = ${buildout:directory}/var/bin
…

or same as before, to somewhere other place non relative to the sources:

% buildstrap -r /tmp -s `pwd`/buildstrap -e /tmp/buildstrap-var -b /tmp/buildstrap-bin show buildstrap requirements.txt
[buildout]
develop = .
directory = /tmp/buildstrap-env/
eggs-directory = /tmp/buildstrap-var/eggs
develop-eggs-directory = /tmp/buildstrap-var/develop-eggs
parts-directory = /tmp/buildstrap-var/parts
develop-dir = /tmp/buildstrap-var/develop
bin-directory = /tmp/buildstrap-bin
…

 Copyright 2016, Bernard `Guyzmo` Pratz.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	buildstrap 0.4.0 documentation

buildstrap package

Submodules

buildstrap.buildstrap module

Buildstrap: generate and run buildout in your projects

Usage: {} [-v...] [options] [run|show|debug|generate] [-p part...]<package> <requirements>...

Options:
 run run buildout once buildout.cfg has been generated
 show show the buildout.cfg (same as using `-o -`)
 debug print internal representation of buildout config
 generate create the buildout.cfg file (default action)
 <package> use this name for the package being developed
 <requirements> use this requirements file as main requirements
 -p,--part <part> choose part template to use (use "list" to show all)
 -i,--interpreter <python> use this python version
 -o,--output <buildout.cfg> file to output [default: buildout.cfg]
 -r,--root <path> path to the project root (where buildout.cfg will
 be generated) (defaults to ./)
 -s,--src <path> path to the sources (default is same as root path)
 relative to the root path if not absolute
 -e,--env <path> path to the environment data [default: var]
 relative to directory if not absolute
 -b,--bin <path> path to the bin directory [default: bin]
 relative to directory if not absolute
 -f,--force force overwrite output file if it exists
 -c,--config <path> path to the configuration directory
 [default: ~/.config/buildstrap]
 -v,--verbose increase verbosity
 -h,--help show this message
 --version show version

For more detailed help, please read the documentation
on https://readthedocs.org/buildstrap

	
class buildstrap.buildstrap.ListBuildout[source]

	Bases: list

Makes it possible to print a list the way buildout expects it.

Because buildout uses a custom built parser for parsing ini style files,
that has a major difference in list handling from the standard config
parser.

The standard configparser doesn’t anything about lists, and outputs
python’s internal representation of strings: ['a', 'b', 'c'] as values.
And the standard configparser consider multiline values as a multiline
string.

On the other hand, buildout considers multiline values as lists, one value
per line.

This class uses a context manager to define the behaviour of the string conversion
method. The default behaviour is the same as the standard list. But when within
the context of the generate_context method, it prints lists as multiline string,
one value per line, the way buildout expects it.

	
classmethod generate_context()[source]

	Context manager to change the string conversion behaviour on this class

	
buildstrap.buildstrap.build_part_buildout(root_path=None, src_path=None, env_path=None, bin_path=None)[source]

	Generates the buildout part

This part is the entry point of a buildout configuration file, setting up
general values for the environment. Here we setup paths and defaults for
buildout’s behaviour. Please refer to buildout documentation for more.

This will output a buildout header that can be considered as a good start:

[buildout]
newest=false
parts=
package=
extensions=gp.vcsdevelopc
directory=.
develop=${buildout:directory}
eggs-directory=${buildout:directory}/var/eggs
develop-eggs-directory=${buildout:directory}/var/develop-eggs
develop-dir=${buildout:directory}/var/develop
parts-directory=${buildout:directory}/var/parts
requirements=

Parameter root_path will change the path to the project’s root, which is where
the enviroment will be based on. If you’re placing the buildout.cfg file in another
directory than the root of the project, set it to the path that can get you from
the buildout.cfg into the project, and it will all work ok.

Parameter src_path will change the path to the sources, so if you’ve got your
sources in ./src, you can set it up to src and it will generate:

develop=./src

Beware that all non-absolute paths given to src_path are relative to the
root_path.

For parameter bin_path and env_path, it will respectively change path to the
generated bin directory and env directory, after running buildout.

	Parameters:	
	root_path – path string to the root of the project (from which all other paths are relative to)

	src_path – path string to the sources (where setup.py is)

	env_path – path string to the environment (where dependencies are downloaded)

	bin_path – path string to the runnable scripts

	Returns:	the buildout part as a dict

	
buildstrap.buildstrap.build_part_target(target, packages=[], interpreter=None)[source]

	Generates a part to run the currenctly develop package

This will output a part, that will make a script based on the current package
developed, using the zc.recipe.egg recipe, to populate the environment.
The generated part follows the following template:

[<target>]
recipe=zc.recipe.egg
eggs=<package>
interpreter=<interpreter>

If no packages argument is given, the list only contains the reference to
the requirements egg list, otherwise the list of packages gets appended.
If no interpreter argument is given, the directive is ignored.

	Parameters:	
	target – name to be used for the part

	interpreter – if given, setup the interpreter directive, using the name
of a python interpreter as a string.

	packages – if given, adds that package to the list of requirements.

	Raises:	TypeError – if the packages is not a list of string

	Returns:	dict representation of the part

	
buildstrap.buildstrap.build_part_template(name, config_path)[source]

	Creates a part out of a template file

Will resolve a part file based on its name, by looking through both package’s
static directory, and through user defined configuration path.

The template file will feature a section (which name is the same as the file name)
and will be parsed, and then added to the buildout file as is. It will also be
named with the .part.cfg extension.

	Parameters:	
	name – name of the template file (without extension)

	config_path – directory where to look for the template file

	Returns:	dict representation of a part

	Raises:	FileNotFoundError if no template can be found.

	
buildstrap.buildstrap.build_parts(packages, requirements, part_templates=[], interpreter=None, config_path=None, root_path='.', src_path=None, env_path=None, bin_path=None)[source]

	Builds up the different parts of the buildout configuration

this is the workhorse of this code. It will build and return an internal
dict representation of a buildout configuration, following the values given
by the arguments. The buildout configuration can be seen as a succession of
parts, each one being a section in the configuration file. For more, please
refer to buildout’s documentation.

First, it generates the [buildout] part within the dict representation.
Within it, it will setup the packages value so we keep track of which
packages you want to build, the requirements value will be used to find
and download all the eggs that are needed as dependencies. the parts list
will keep track of each generated part, only one part being generated for the
code under development (even if there are several packages).

The first argument will define the first part’s name (the one that will be
used to generate a script if an entry point has been defined within the setup.py).
Thus, it will append the package name to the list of packages within the [buildout]
section, and be added to the list of eggs that will be run:

[buildout]
package = marvin
parts = marvin
…

[marvin]
recipe = zc.recipe.egg
eggs = ${buildout:requirements-eggs}
 marvin

The second argument is the list of requirements to be parsed and fed to gp.vcsdevelop
so it can work out downloading all your dependencies:

[buildout]
requirements = requirements.txt
…

Both can be lists (or comma separated list — as a string) of package names and
requirements files, so if you give packages and requirements being respectively:

	dent,prefect,beeblebrox and

	requirements.txt,requirements-dev.txt

it will generate:

[buildout]
…
parts = marvin
package = marvin prefect beeblebrox
requirements = requirements.txt
 requirements-dev.txt

[marvin]
recipe = zc.recipe.egg
eggs = ${buildout:requirements-eggs}
 marvin

The third argument enables to load a part template. It will load the part from
the static path within the package, or from config_path, which defaults to
the user’s home config directory.

	Parameters:	
	packages – the list of packages to target as first part (list or comma separated string)

	requirements – the list of requirements to target as first part (list or comma separated string)

	part_templates – list of templates to load

	interpreter – string name of the python interpreter to use

	config_path – path string to the configuration directory where to find the template parts files.

	root_path – path string to the root of the project (from which all other paths are relative to)

	src_path – path string to the sources (where setup.py is)

	env_path – path string to the environment (where dependencies are downloaded)

	bin_path – path string to the runnable scripts

	Returns:	OrderedDict instance configured with all parts.

	
buildstrap.buildstrap.buildstrap(args)[source]

	Parses the command line arguments, build the parts, generate the config and runs buildout

refer to the __doc__ of this module for all arguments.

	Parameters:	args – arguments to parse

	Returns:	0 on success, 1 otherwise

	
buildstrap.buildstrap.generate_buildout_config(parts, output, force=False)[source]

	Generates the buildout configuration

Using the custom ListBuildout context, lists will be printed as multilines.
If output is set to - it will print to stdout the file.

	Parameters:	
	parts – dict based representation of the buildout file to generate

	output – name of the file to output

	force – if set, it won’t care whether the file exists

	Raises:	FileExistsError – when a file already exists.

	
buildstrap.buildstrap.list_part_templates(config_path)[source]

	Iterates over the available part templates

Will get through both package’s templates path and user config path to
check for .part.cfg files.

	Parameters:	config_path – path to the user’s part template directory

	Returns:	iterator over the list of templates

	
buildstrap.buildstrap.run()[source]

	Parses arguments, gets current command name and version number

Module contents

 Copyright 2016, Bernard `Guyzmo` Pratz.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	buildstrap 0.4.0 documentation

 Python Module Index

 b

 			

 		
 b	

 	[image: -]
 	
 buildstrap	

 	
 	
 buildstrap.buildstrap	

 Copyright 2016, Bernard `Guyzmo` Pratz.
 Created using Sphinx 1.4.4.

 Navigation

 	
 index

 	
 modules |

 	buildstrap 0.4.0 documentation

Index

 B
 | G
 | L
 | R

B

 	

 	build_part_buildout() (in module buildstrap.buildstrap)

 	build_part_target() (in module buildstrap.buildstrap)

 	build_part_template() (in module buildstrap.buildstrap)

 	build_parts() (in module buildstrap.buildstrap)

 	

 	buildstrap (module)

 	buildstrap() (in module buildstrap.buildstrap)

 	buildstrap.buildstrap (module)

G

 	

 	generate_buildout_config() (in module buildstrap.buildstrap)

 	

 	generate_context() (buildstrap.buildstrap.ListBuildout class method)

L

 	

 	list_part_templates() (in module buildstrap.buildstrap)

 	

 	ListBuildout (class in buildstrap.buildstrap)

R

 	

 	run() (in module buildstrap.buildstrap)

 Copyright 2016, Bernard `Guyzmo` Pratz.
 Created using Sphinx 1.4.4.

 _static/minus.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

modules.html

 Navigation

 		
 index

 		
 modules |

 		buildstrap 0.4.0 documentation »

buildstrap

		buildstrap package
		Submodules

		buildstrap.buildstrap module

		Module contents

 © Copyright 2016, Bernard `Guyzmo` Pratz.
 Created using Sphinx 1.4.4.

search.html

 Navigation

 		
 index

 		
 modules |

 		buildstrap 0.4.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Bernard `Guyzmo` Pratz.
 Created using Sphinx 1.4.4.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		buildstrap 0.4.0 documentation »

 All modules for which code is available

		buildstrap.buildstrap

 © Copyright 2016, Bernard `Guyzmo` Pratz.
 Created using Sphinx 1.4.4.

_modules/buildstrap/buildstrap.html

 Navigation

 		
 index

 		
 modules |

 		buildstrap 0.4.0 documentation »

 		Module code »

 Source code for buildstrap.buildstrap

#!/usr/bin/env python

'''
Buildstrap: generate and run buildout in your projects ::

 Usage: {} [-v...] [options] [run|show|debug|generate] [-p part...]<package> <requirements>...

 Options:
 run run buildout once buildout.cfg has been generated
 show show the buildout.cfg (same as using `-o -`)
 debug print internal representation of buildout config
 generate create the buildout.cfg file (default action)
 <package> use this name for the package being developed
 <requirements> use this requirements file as main requirements
 -p,--part <part> choose part template to use (use "list" to show all)
 -i,--interpreter <python> use this python version
 -o,--output <buildout.cfg> file to output [default: buildout.cfg]
 -r,--root <path> path to the project root (where buildout.cfg will
 be generated) (defaults to ./)
 -s,--src <path> path to the sources (default is same as root path)
 relative to the root path if not absolute
 -e,--env <path> path to the environment data [default: var]
 relative to directory if not absolute
 -b,--bin <path> path to the bin directory [default: bin]
 relative to directory if not absolute
 -f,--force force overwrite output file if it exists
 -c,--config <path> path to the configuration directory
 [default: ~/.config/buildstrap]
 -v,--verbose increase verbosity
 -h,--help show this message
 --version show version

For more detailed help, please read the documentation
on https://readthedocs.org/buildstrap
'''

import os, sys

from contextlib import contextmanager
from collections import OrderedDict
from configparser import ConfigParser
from pprint import pprint
from docopt import docopt

from zc.buildout.configparser import parse
from zc.buildout.buildout import main as buildout

import pkg_resources

__version__ = pkg_resources.require('buildstrap')[0].version

[docs]class ListBuildout(list):
 '''Makes it possible to print a list the way buildout expects it.

 Because buildout uses a custom built parser for parsing ini style files,
 that has a major difference in list handling from the standard config
 parser.

 The standard configparser doesn't anything about lists, and outputs
 python's internal representation of strings: ``['a', 'b', 'c']`` as values.
 And the standard configparser consider multiline values as a multiline
 string.

 On the other hand, buildout considers multiline values as lists, one value
 per line.

 This class uses a context manager to define the behaviour of the string conversion
 method. The default behaviour is the same as the standard list. But when within
 the context of the ``generate_context`` method, it prints lists as multiline string,
 one value per line, the way buildout expects it.
 '''
 _generating_state = False

 @classmethod
 @contextmanager
[docs] def generate_context(cls):
 '''Context manager to change the string conversion behaviour on this class'''
 cls._generating_state = True
 yield
 cls._generating_state = False

 def __str__(self):
 '''Replaces standard behaviour of list string output, so it prints as buildout
 expects when generating the buildout file'''
 if self._generating_state is True:
 if len(self) == 1:
 return self[0]
 else:
 return '\n'.join(self)
 else:
 return super(ListBuildout, self).__str__()

[docs]def build_part_target(target, packages=list(), interpreter=None):
 '''Generates a part to run the currenctly develop package

 This will output a part, that will make a script based on the current package
 developed, using the ``zc.recipe.egg`` recipe, to populate the environment.
 The generated part follows the following template::

 [<target>]
 recipe=zc.recipe.egg
 eggs=<package>
 interpreter=<interpreter>

 If no ``packages`` argument is given, the list only contains the reference to
 the requirements egg list, otherwise the list of packages gets appended.
 If no interpreter argument is given, the directive is ignored.

 Args:
 target: name to be used for the part
 interpreter: if given, setup the interpreter directive, using the name
 of a python interpreter as a string.
 packages: if given, adds that package to the list of requirements.

 Raises:
 TypeError: if the packages is not a list of string

 Returns:
 dict representation of the part
 '''
 if not isinstance(packages, list):
 raise TypeError('packages argument should be a list!')

 eggs = ['${buildout:requirements-eggs}']
 eggs += packages

 part = {
 target: OrderedDict([
 ('recipe' , 'zc.recipe.egg'),
 ('eggs' , ListBuildout(eggs)),
])
 }

 if interpreter:
 part[target].update({'interpreter': interpreter})

 return part

[docs]def list_part_templates(config_path):
 '''Iterates over the available part templates

 Will get through both package's templates path and user config path to
 check for ``.part.cfg`` files.

 Args:
 config_path: path to the user's part template directory

 Returns:
 iterator over the list of templates

 '''
 user_config_path = os.path.join(os.path.expanduser(config_path))
 pkg_config_path = os.path.join(os.path.dirname(__file__), 'templates')

 templates = []
 if os.path.exists(pkg_config_path):
 templates += os.listdir(os.path.join(pkg_config_path))
 print('Using parts from {}'.format(pkg_config_path), file=sys.stderr)
 if os.path.exists(user_config_path):
 templates += os.listdir(user_config_path)
 print('Using parts from {}'.format(user_config_path), file=sys.stderr)

 for fname in templates:
 if 'list' in fname:
 print('Warning: a part template named list.cfg exists, and cannot be called. Please change its name!', file=sys.stderr)
 if '.part.cfg' in fname:
 yield fname.replace('.part.cfg', '')
 else:
 print('Warning: file named {} does not end with .part.cfg and is ignored!'.format(fname), file=sys.stderr)

[docs]def build_part_template(name, config_path):
 '''Creates a part out of a template file

 Will resolve a part file based on its name, by looking through both package's
 static directory, and through user defined configuration path.

 The template file will feature a section (which name is the same as the file name)
 and will be parsed, and then added to the buildout file *as is*. It will also be
 named with the ``.part.cfg`` extension.

 Args:
 name: name of the template file (without extension)
 config_path: directory where to look for the template file

 Returns:
 dict representation of a part

 Raises:
 FileNotFoundError if no template can be found.
 '''
 template_name = '{}.part.cfg'.format(name)
 template_path = os.path.join(os.path.expanduser(config_path))

 try:
 template_file = open(template_path, 'r')
 except FileNotFoundError:
 try:
 template_path = os.path.join(os.path.dirname(__file__), 'templates', template_name)
 template_file = open(template_path, 'r')
 except FileNotFoundError:
 template_file = None

 if not template_file:
 raise FileNotFoundError('Missing template file {}.part.cfg in {}'.format(name, config_path))

 res = parse(open(template_path, 'r'), name)
 # make items order predictible
 for k,v in res.items():
 if isinstance(v, dict):
 res[k] = OrderedDict(sorted(v.items(), key=lambda t: t[0]))
 return res

[docs]def build_part_buildout(root_path=None, src_path=None, env_path=None, bin_path=None):
 '''Generates the buildout part

 This part is the entry point of a buildout configuration file, setting up
 general values for the environment. Here we setup paths and defaults for
 buildout's behaviour. Please refer to buildout documentation for more.

 This will output a buildout header that can be considered as a good start::

 [buildout]
 newest=false
 parts=
 package=
 extensions=gp.vcsdevelopc
 directory=.
 develop=${buildout:directory}
 eggs-directory=${buildout:directory}/var/eggs
 develop-eggs-directory=${buildout:directory}/var/develop-eggs
 develop-dir=${buildout:directory}/var/develop
 parts-directory=${buildout:directory}/var/parts
 requirements=

 Parameter ``root_path`` will change the path to the project's root, which is where
 the enviroment will be based on. If you're placing the ``buildout.cfg`` file in another
 directory than the root of the project, set it to the path that can get you from
 the buildout.cfg into the project, and it will all work ok.

 Parameter ``src_path`` will change the path to the sources, so if you've got your
 sources in ``./src``, you can set it up to src and it will generate::

 develop=./src

 Beware that all non-absolute paths given to ``src_path`` are relative to the
 ``root_path``.

 For parameter ``bin_path`` and ``env_path``, it will respectively change path to the
 generated ``bin`` directory and ``env`` directory, after running buildout.

 Args:
 root_path: path string to the root of the project (from which all other paths are relative to)
 src_path: path string to the sources (where ``setup.py`` is)
 env_path: path string to the environment (where dependencies are downloaded)
 bin_path: path string to the runnable scripts

 Returns:
 the buildout part as a dict
 '''
 buildout = OrderedDict()
 buildout['newest'] = 'false'
 buildout['parts'] = ''
 buildout['package'] = ''
 buildout['extensions'] = 'gp.vcsdevelop'
 if root_path:
 buildout['directory'] = root_path
 if not env_path:
 env_path = 'var'
 if not os.path.isabs(env_path):
 env_path = os.path.join('${buildout:directory}', env_path)
 if not bin_path:
 bin_path = 'bin'
 if not os.path.isabs(bin_path):
 bin_path = os.path.join('${buildout:directory}', bin_path)
 buildout['develop'] = src_path if src_path else '.'
 buildout['eggs-directory'] = os.path.join(env_path, 'eggs')
 buildout['develop-eggs-directory'] = os.path.join(env_path, 'develop-eggs')
 buildout['parts-directory'] = os.path.join(env_path, 'parts')
 buildout['develop-dir'] = os.path.join(env_path, 'develop')
 buildout['bin-directory'] = bin_path
 buildout['requirements'] = ListBuildout([])
 return {'buildout': buildout}

[docs]def build_parts(packages, requirements, part_templates=[], interpreter=None,
 config_path=None, root_path='.', src_path=None, env_path=None, bin_path=None):
 '''Builds up the different parts of the buildout configuration

 this is the workhorse of this code. It will build and return an internal
 dict representation of a buildout configuration, following the values given
 by the arguments. The buildout configuration can be seen as a succession of
 parts, each one being a section in the configuration file. For more, please
 refer to buildout's documentation.

 First, it generates the ``[buildout]`` part within the dict representation.
 Within it, it will setup the ``packages`` value so we keep track of which
 packages you want to build, the ``requirements`` value will be used to find
 and download all the eggs that are needed as dependencies. the ``parts`` list
 will keep track of each generated part, only one part being generated for the
 code under development (even if there are several packages).

 The first argument will define the first part's name (the one that will be
 used to generate a script if an entry point has been defined within the ``setup.py``).
 Thus, it will append the package name to the list of packages within the ``[buildout]``
 section, and be added to the list of eggs that will be run::

 [buildout]
 package = marvin
 parts = marvin
 …

 [marvin]
 recipe = zc.recipe.egg
 eggs = ${buildout:requirements-eggs}
 marvin

 The second argument is the list of requirements to be parsed and fed to ``gp.vcsdevelop``
 so it can work out downloading all your dependencies::

 [buildout]
 requirements = requirements.txt
 …

 Both can be lists (or comma separated list — as a *string*) of package names and
 requirements files, so if you give packages and requirements being respectively:

 * ``dent,prefect,beeblebrox`` and
 * ``requirements.txt,requirements-dev.txt``

 it will generate::

 [buildout]
 …
 parts = marvin
 package = marvin prefect beeblebrox
 requirements = requirements.txt
 requirements-dev.txt

 [marvin]
 recipe = zc.recipe.egg
 eggs = ${buildout:requirements-eggs}
 marvin

 The third argument enables to load a part template. It will load the part from
 the static path within the package, or from ``config_path``, which defaults to
 the user's home config directory.

 Args:
 packages: the list of packages to target as first part (list or comma separated string)
 requirements: the list of requirements to target as first part (list or comma separated string)
 part_templates: list of templates to load
 interpreter: string name of the python interpreter to use
 config_path: path string to the configuration directory where to find the template parts files.
 root_path: path string to the root of the project (from which all other paths are relative to)
 src_path: path string to the sources (where ``setup.py`` is)
 env_path: path string to the environment (where dependencies are downloaded)
 bin_path: path string to the runnable scripts

 Returns:
 OrderedDict instance configured with all parts.
 '''
 parts = OrderedDict()
 targets = []

 if not isinstance(packages, list):
 packages = packages.split(',')

 if not isinstance(requirements, list):
 requirements = requirements.split(',')

 if len(packages) == 0:
 raise ValueError("There shall be at least one package to setup.")

 if len(requirements) == 0:
 raise ValueError("There shall be at least one requirement to setup.")

 first_part_name = packages[0]

 parts.update(build_part_buildout(root_path, src_path, env_path, bin_path))

 # build main package part
 parts.update(build_part_target(first_part_name, packages, interpreter))
 targets.append(first_part_name)

 parts.update(build_part_target(first_part_name, packages, interpreter))

 for template_name in part_templates or []:
 parts[template_name] = build_part_template(template_name, config_path)[template_name]
 targets.append(template_name)

 for r in requirements:
 parts['buildout']['requirements'] += ListBuildout([os.path.join('${buildout:develop}', r)])
 parts['buildout']['parts'] = ListBuildout(targets)
 parts['buildout']['package'] = ' '.join(packages)

 return parts

[docs]def generate_buildout_config(parts, output, force=False):
 '''Generates the buildout configuration

 Using the custom ``ListBuildout`` context, lists will be printed as multilines.
 If output is set to ``-`` it will print to stdout the file.

 Args:
 parts: dict based representation of the buildout file to generate
 output: name of the file to output
 force: if set, it won't care whether the file exists

 Raises:
 FileExistsError: when a file already exists.
 '''
 with ListBuildout.generate_context():
 parser = ConfigParser()
 parser.read_dict(parts)

 if output == '-':
 parser.write(sys.stdout)
 return

 if not force and os.path.exists(output):
 raise FileExistsError('\n'.join([
 'Cannot overwrite {}: file already exists! Use --force if necessary.'.format(output),
 'As a buildout configuration exists, you might want to run buildout directly!'
]))

 with open(output, 'w') as out:
 parser.write(out)

[docs]def buildstrap(args):
 '''Parses the command line arguments, build the parts, generate the config and runs buildout

 refer to the __doc__ of this module for all arguments.

 Args:
 args: arguments to parse

 Returns:
 0 on success, 1 otherwise
 '''
 try:
 if args['--verbose'] >= 2: # pragma: no cover
 print(args, file=sys.stderr)

 parts = build_parts(
 args['<package>'],
 args['<requirements>'],
 args['--part'],
 args['--interpreter'],
 args['--config'],
 args['--root'],
 args['--src'],
 args['--env'],
 args['--bin'])

 if args['debug']:
 pprint(parts)
 return 0

 if args['show']:
 args['--output'] = '-'

 generate_buildout_config(parts, args['--output'], args['--force'])

 if args['run']:
 buildout(['-c', args['--output']])

 return 0
 except Exception as err: # pragma: no cover
 print('Fatal error: {}'.format(err), file=sys.stderr)
 if args['--verbose']:
 print('-----------------------------------', file=sys.stderr)
 import traceback
 traceback.print_exc()
 return 1

[docs]def run(): # pragma: no cover
 '''Parses arguments, gets current command name and version number'''
 sys.exit(buildstrap(docopt(__doc__.format(os.path.basename(sys.argv[0])),
 version='Buildstrap v{}'.format(__version__))))

if __name__ == "__main__": # pragma: no cover
 '''well there's always a good place to start'''
 run()

 © Copyright 2016, Bernard `Guyzmo` Pratz.
 Created using Sphinx 1.4.4.

_static/comment.png

_static/down.png

